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Summary

Estimation of treatment effects in randomized studies is often hampered by possible selection bias 

induced by conditioning on or adjusting for a variable measured post-randomization. One 

approach to obviate such selection bias is to consider inference about treatment effects within 

principal strata, i.e., principal effects. A challenge with this approach is that without strong 

assumptions principal effects are not identifiable from the observable data. In settings where such 

assumptions are dubious, identifiable large sample bounds may be the preferred target of 

inference. In practice these bounds may be wide and not particularly informative. In this work we 

consider whether bounds on principal effects can be improved by adjusting for a categorical 

baseline covariate. Adjusted bounds are considered which are shown to never be wider than the 

unadjusted bounds. Necessary and sufficient conditions are given for which the adjusted bounds 

will be sharper (i.e., narrower) than the unadjusted bounds. The methods are illustrated using data 

from a recent, large study of interventions to prevent mother-to-child transmission of HIV through 

breastfeeding. Using a baseline covariate indicating low birth weight, the estimated adjusted 

bounds for the principal effect of interest are 63% narrower than the estimated unadjusted bounds.
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1. Introduction

Often in randomized trials to evaluate the effect of a treatment, inference is hampered by 

possible selection bias induced by conditioning on or adjusting for a variable measured post-

randomization. For instance, in randomized clinical trials where some study participants do 

not comply with their treatment assignment, investigators are often interested in the effect of 

treatment in participants who were compliant. One approach that avoids potential selection 

bias induced by conditioning on a post-randomization variable is to focus inference on the 

causal effect within a principal strata of interest, i.e., the principal effect (Frangakis and 

Rubin 2002). Principal strata are defined by the pair of potential outcomes under either 

Supplementary Materials
Web Appendices referenced in Sections 1 and 6 are available with this paper at the Biometrics website on Wiley Online Library.

HHS Public Access
Author manuscript
Biometrics. Author manuscript; available in PMC 2014 July 08.

Published in final edited form as:
Biometrics. 2013 December ; 69(4): 812–819. doi:10.1111/biom.12103.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



treatment assignment of the post-randomization variable. For instance, in the setting of non-

compliance the principal stratum of interest may be study participants who would comply 

with their randomization assignment regardless of whether assigned to treatment or control 

(Angrist et al. 1996). In vaccine trials, a principal stratum of interest may be individuals who 

would be infected at a certain time regardless of vaccine status (Shepherd et al. 2011). In 

studies of interventions to prevent mother-to-child transmission (MTCT) of HIV through 

breastfeeding, a principal stratum of interest is infants who would be uninfected at a certain 

time regardless of treatment (Nolen and Hudgens 2011; Long and Hudgens 2012). There are 

many other settings where inference about treatment effects within certain principal strata 

may be of interest; see VanderWeele (2011) for a recent overview. A primary goal in these 

settings is often to better understand a treatment’s effect by drawing inference about effects 

within subgroups defined by the principal strata. The principal stratification approach is less 

helpful for decision making, as principal stratum membership is generally not identifiable 

prior to treatment (Joffe 2011).

In many instances, even after treatment assignment individual principal strata membership is 

not identifiable from the observable data without strong assumptions because only one of the 

two post-randomization variable potential outcomes is ever observed for an individual. In 

turn, the principal effect of interest is not identifiable. One approach to cope with lack of 

identifiability is to conduct sensitivity analysis wherein some model is assumed, indexed by 

an unidentifiable parameter conditional on which the principal effect is identifiable from the 

observable data. Inference about the principal effect is then conducted conditional on some 

value of the unidentifiable parameter and sensitivity of the inference is examined by 

considering different values of the parameter. An alternative approach entails drawing 

inference about bounds on the principal effects, e.g., Zhang and Rubin (2003), Cheng and 

Small (2006). Informally, these extreme bounds provide the smallest and largest possible 

values of the principal effect consistent with the observed data distribution. This approach is 

appealing in that typically bounds can be obtained under minimal assumptions. However, in 

many cases the bounds may be quite wide and therefore not particularly informative about 

the principal effect.

Grilli and Mealli (2008) derived nonparametric bounds on principal effects under a number 

of different assumptions. They suggested these bounds can be improved (or narrowed) by 

creating bounds within strata defined by a baseline covariate and combining these stratum 

specific bounds by taking a weighted average to obtain new adjusted bounds on the 

principal effect. Grilli and Mealli employed this approach in the analysis of data from an 

employment study with mixed results: the adjusted bounds were an improvement on only 

one side of the unadjusted bounds, i.e., the adjusted upper bound was less than the 

unadjusted upper bound but the adjusted lower bound was also less than the unadjusted 

lower bound. The reason for only partial improvement was not addressed. More recent work 

by Lee (2009) and Mealli and Pacini (2012) indicate the adjusted bounds will never be wider 

than the unadjusted bounds and sometimes the adjusted bounds will be strictly narrower than 

the unadjusted bounds. In this paper we characterize the exact circumstances for which 

adjusting for a baseline covariate leads to improved bounds.
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The outline of the remainder of this paper is as follows. In Section 2, notation and 

assumptions are introduced. Section 3 explains the lack of identifiability of the principal 

effect and in Section 4 the unadjusted bounds are reviewed. Section 5 defines the adjusted 

bounds based on a weighted average of bounds within levels of the baseline covariate. 

Section 6 contains the main result of this paper, giving necessary and sufficient conditions 

under which the covariate adjusted bounds improve upon (i.e., are narrower than) the 

unadjusted bounds. In Section 7 large sample inferential methods are discussed. In Section 

8, the adjusted and unadjusted bounds are compared using data from a recent, large MTCT 

study. Conditions in which adjusting for the covariate leads to identification of the principal 

effect are discussed in Section 9. A brief discussion is given in Section 10. Proofs of the 

propositions in Section 6 are given in the Web Appendix A.

2. Notation and Assumptions

To motivate, throughout we consider the MTCT example where infants of HIV positive 

mothers are randomized at birth (i.e., baseline or time 0) to treatment or control. Suppose n 

infants are enrolled in a MTCT study and for i = 1, …, n let Zi denote the randomization 

assignment for infant i. Without loss of generality let Zi = 0 correspond to control and Zi = 1 

correspond to treatment. Let Xi be some binary variable measured at baseline (prior to 

randomization) taking on values 0 or 1. For simplicity Xi is assumed to be binary for now, 

although the results derived below will apply for any baseline categorical covariate with a 

finite number of levels. The primary endpoint in MTCT studies is typically HIV infection of 

the infant by some time point τ (e.g., six months) after baseline. Denote the presence or 

absence of the primary endpoint by Yi, where Yi = 1 indicates infant i became infected by τ 

and otherwise Yi = 0. Because the goal of treatment is to prevent breast milk transmission of 

HIV, investigators are primarily interested in infant HIV infections that occur before τ but 

after some time τ0 > 0 (e.g., τ0 = 2 weeks), as infections prior to τ0 are likely due to in utero 

or peripartum transmission and not breastfeeding. Let Si denote whether infant i is infected 

by τ0, where Si = 1 if infant i is HIV infected by τ0 and Si = 0 otherwise. Let Si(z) denote the 

potential value of Si when assigned treatment z for z = 0, 1 such that Si = (1 − Zi)Si(0) + 

ZiSi(1). Define Yi(z) similarly. Assume the treatment assignment of an infant does not affect 

the potential outcomes of other infants (i.e., there is no interference) and that there are not 

multiple forms of treatment.

An analysis of the effect of treatment that simply excludes infants infected by τ0 (i.e., Si = 1) 

is subject to selection bias. That is, because the set (or population) of infants that would be 

infected by τ0 when assigned treatment Zi = 1 is not necessarily the same as the set of infants 

that would be infected by τ0 if assigned control Zi = 0, direct comparisons between trial 

arms that exclude infants infected by τ0 in general do not have a causal interpretation. To 

avoid such selection bias, the principal stratification framework may be adopted (Frangakis 

and Rubin 2002). Principal strata are defined by sets of infants with the same potential 

outcome pair (Si(0) = s0, Si(1) = s1). Define the always infected (AI) principal stratum to be 

infants with s0 = s1 = 1, i.e., infants who would be infected at τ0 regardless of randomization 

assignment. Similarly define the harmed stratum as those infants with s0 = 0, s1 = 1; the 

protected stratum as those infants with s0 = 1, s1 = 0; and the never infected (NI) stratum as 

those infants with s0 = s1 = 0. Based on considerations described above, investigators 
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conducting MTCT trials are interested in the NI stratum. The causal estimand of interest, the 

principal effect, is the effect of treatment on Yi in infants who would be uninfected at τ0 

under either randomization assignment, namely

Below we consider large sample bounds for CE that do and do not adjust for the baseline 

covariate Xi. Throughout we assume

Assumption 1 (Independent Treatment Assignment): Zi ⊥ (Xi, Si(0), Si(1), Yi(0), Yi(1))

Assumption 2 (Monotonicity): Si(1) ≤ Si(0) for all i

where ⊥ denotes independence. Assumption 1 will hold in randomized trials. Monotonicity 

assumes that treatment does no harm with respect to the intermediate variable Si, i.e., there 

are no infants who would be infected by τ0 only if treated. Under Assumption 2, there are 

only three possible principal strata: AI, NI, and protected.

3. Partial Identifiability

In this section we consider identifiability of CE. Let θzst = Pr[Yi(z) = 1|Si(1) = s, Si(0) = t], πz 

= Pr[Yi(z) = 1|Si(z) = 0], and γ = Pr[Si(0) = 0|Si(1) = 0], such that CE = θ100 − θ000. Assume 

γ > 0 as otherwise the NI stratum is empty with probability 1. Under Assumptions 1 and 2, 

θ000 = Pr[Yi = 1|Si = 0, Zi = 0], which is identifiable from the observed data. However, θ100 

is not identifiable. Following Hudgens and Halloran (2006) note

i.e.,

(1)

Under Assumption 1, π1 is identifiable. Under Assumptions 1 and 2, γ is identifiable 

because

On the other hand, θ100 and θ101 are not identifiable because infants who were assigned 

treatment and uninfected at τ0 are a mixture of infants from the protected and NI strata. 

Solving (1) for θ100 yields
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(2)

Equation (2) describes a line with intercept π1/γ and slope −(1 − γ)/γ. Any pair of points 

(θ101, θ100) in the unit square that are on this line will give rise to the same observed data 

distribution.

Note that CE is identifiable if and only if γ = 1, π1 = 1, or π1 = 0. If γ = 1, then (2) is a 

horizontal line with intercept π1 and thus θ100 = π1. Note γ = 1 is equivalent to Pr[Si(0) = 0] 

= Pr[Si(1) = 0], i.e., treatment has no effect on the intermediate variable Si. If π1 = 1, then (1) 

implies θ100 = 1; geometrically this corresponds to the line (2) intersecting the unit square at 

the upper right corner (1,1). In words, π1 = 1 means that all treated infants who are 

uninfected at τ0 will become infected by τ. Likewise, if π1 = 0, then (1) implies θ100 = 0, 

corresponding to the line (2) intersecting the unit square at the origin (0,0). In words, π1 = 0 

means that all treated infants who are uninfected at τ0 will not become infected by τ. 

Otherwise, if γ < 1 and 0 < π1 < 1, under Assumptions 1 and 2, CE is not identifiable from 

the observable random variables. On the other hand, θ000, π1, and γ are identifiable, 

implying the observed data distribution does reveal some information about possible values 

for CE, i.e., CE is partially identifiable. The focus of the sequel is on large sample bounds, 

i.e., the smallest and largest possible values of CE that are consistent with the observed data 

law.

4. Unadjusted Bounds

In this section, we present large sample bounds for CE (Zhang and Rubin 2003; Hudgens et 

al. 2003) that ignore the baseline covariate X. The large sample bounds for CE are found by 

first bounding θ100. The upper bound for θ100 is obtained by assuming θ101 = 0 or θ100 = 1. 

Likewise, the lower bound for θ100 is obtained by assuming θ101 = 1 or θ100 = 0. These 

bounds can be envisaged as corresponding to the points where the line (2) intersects the unit 

square (Hudgens and Halloran 2006). In particular, the upper and lower bounds are

(3)

Bounds for CE are found by replacing θ100 by  and , i.e.,  and 

. These bounds will be referred to as “unadjusted” bounds because no 

information from the covariate is used.

To illustrate, let the probabilities corresponding to a fictitious trial of MTCT of HIV be γ = 

0.95, π1 = 0.02, and π0 = 0.05. Using (3), for this trial 

 and  (note here 

and in the sequel that reported numerical results are rounded, in this case to the third decimal 

place). This gives the unadjusted bounds as [CEl, CEu] = [0–0.05, 0.021–0.05] = [−0.05, 

−0.029] because θ000 = π0. In this example the bounds exclude zero, implying treatment 

reduces the risk of Y = 1 in the NI stratum. Let the probabilities for a second fictitious trial 
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be γ = 0.80, π1 = 0.85, and π0 = 0.95. Then  and , implying the unadjusted 

bounds are [CEl, CEu] = [−0.137, 0.05]. These two fictitious trials will be revisited in the 

next section.

5. Adjusted Bounds

Next we consider the method proposed by Grilli and Mealli (2008) for adjusting the large 

sample bounds using the binary baseline covariate X, i.e., bounds will be obtained within 

strata defined by X and then weighted averages of the stratum specific bounds will be 

computed. Let θzstx = Pr[Yi(z) = 1|Si(1) = s, Si(0) = t, Xi = x], γx = Pr[Si(0) = 0|Si(1) = 0, Xi = 

x], πzx = Pr[Yi(z) = 1|Si(1) = 0, Xi = x], ϕx = Pr[Xi = x|Si(1) = Si(0) = 0], and λx = Pr[Xi = x|

Si(1) = 0]. Throughout it is assumed that Pr[Si(1) = 0, Si(0) = t, Xi = x] > 0 for x, t = 0, 1 such 

that the conditional probabilities θz0tx, γx, and πzx are all well defined. This assumption also 

implies γx > 0, ϕx > 0 and λx > 0 for x = 0, 1. Note

(4)

where here and in the sequel . As in the unadjusted case, θ100x is not 

identifiable but using arguments analogous to (2) for Xi = x

(5)

and identifiable upper and lower bounds for θ100x are

(6)

Under Assumptions 1 and 2, ϕx is identifiable because Pr[Xi = x|Zi = 0, Si = 0] = Pr[Xi = x|

Si(0) = 0] = Pr[Xi = x|Si(1) = Si(0) = 0]. Therefore, identifiable bounds for θ100 can be 

obtained by combining (4) and (6), namely

(7)

This leads to adjusted bounds  and .

Table 1 contains the values of two different binary baseline covariates, X1 and X2, for each 

of the fictional trials discussed in Section 4. For the first trial and X1, by (6) we have 

, and . Thus,  and . 

Therefore, there is improvement to the lower bound of CE but not to the upper bound when 

adjusting for X1, and thus the unadjusted bounds [CEl, CEu] = [−0.05, −0.029] are wider 
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than the adjusted bounds . On the other hand, adjusting by 

X2 in the first trial does not yield an improvement since  and 

.

For the second trial and X1, , and . Thus, 

 and . Here adjusting for X1 yields a smaller upper bound resulting 

in narrower bounds, i.e., [CEl, CEu] = [−0.137, 0.05] to . 

Moreover, the adjusted upper bound is less than the null value of 0, indicating treatment has 

an effect in the NI principal stratum; such a conclusion was not possible prior to adjusting 

for X1. On the other hand, adjusting for X2 in the second trial yields no improvement in the 

bounds because  and .

A graphical depiction of the unadjusted and adjusted bounds is given in Figure 1. The 

unadjusted bounds correspond to where the solid lines intersect the unit square. Bounds 

within strata defined by X correspond to where the dashed and dotted lines intersect the unit 

square. The adjusted bounds, represented by ○ and +, are weighted averages of these 

stratum specific bounds. For example, in the upper left panel corresponding to trial 1 and X1, 

we see that  is greater than  because the vertical value of + is greater than zero, the 

point where the solid line intersects the horizontal axis.

6. Improvement of the Bounds

The examples in the preceding section illustrate that adjusting for a baseline covariate may 

or may not improve the bounds on CE. In this section, we give necessary and sufficient 

conditions for when the adjusted bounds (7) will be narrower than the unadjusted bounds of 

(3). Proofs of all propositions are given in Web Appendix A.

Proposition 1

 for any baseline binary covariate X.

According to Proposition 1, the adjusted bounds will be at least as narrow as the unadjusted 

bounds no matter the choice of X. This proposition is analogous to Proposition 1b of Lee 

(2009) for Y continuous. To characterize the conditions under which the adjusted bounds are 

strictly narrower than the unadjusted bounds, consider the following two criteria:

(8)

and

(9)

where the value of x in (8) and (9) is not necessarily the same. In words, (8) and (9) indicate 

that Xi is informative about particular orderings between (i) the distribution of Si(0) given 
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Si(1) = 0 and (ii) the distribution of Yi(1) given Si(1) = 0. For the motivating example, these 

criteria indicate that the ordering of (i) the risk of infection (or not) by τ0 when not treated 

and (ii) the risk of infection by τ when treated is different between strata defined by the 

levels of Xi among infants who would not be infected by τ0 if treated. On the other hand, if 

Xi is uninformative about the relation between (i) and (ii) then neither (8) nor (9) will hold. 

For example, if Xi is independent of Si(0) given Si(1) = 0 and if Xi is independent of Yi(1) 

given Si(1) = 0, then neither (8) nor (9) will hold. Using (8) and (9), the following 

propositions characterize exactly the situations when the adjusted bounds will be narrower.

Proposition 2

 if and only if X satisfies (8).

Proposition 2 states (8) is a necessary and sufficient condition for the adjusted upper bound 

for θ100 to be less than the unadjusted bound. This proposition is exemplified in the second 

fictional trial from Section 5 using X1, where π10 < γ0 and π11 > γ1. As shown in the lower 

left panel of Figure 1, (8) is satisfied because the dashed line has intercept greater than 1 and 

the dotted line has intercept less than 1. In contrast, for X1 in the first fictional trial (8) is not 

satisfied because the dashed and dotted lines in the upper left panel of Figure 1 both have 

intercepts less than 1; thus the adjusted upper bound based on X1 does not improve upon the 

unadjusted upper bound.

Proposition 3

 if and only if X satisfies (9).

Proposition 3 provides a necessary and sufficient condition for the adjusted lower bound to 

be greater than the unadjusted lower bound. This proposition is illustrated in the first 

fictional trial from Section 5 using X1, where π10 > (1 − γ0) and π11 < (1 − γ1). As shown in 

the upper left panel of Figure 1, (9) is satisfied because the dashed line intersects the bottom 

of the unit square whereas the dotted line intersects the right side of the unit square. In 

contrast, for X1 in the second ficitious trial (9) is not satisfied because the dashed and dotted 

lines in the lower left panel of Figure 1 both intersect the right side of the unit square; thus 

the adjusted lower bound equals the unadjusted lower bound.

Additional insight regarding criteria (8) and (9) can be obtained by constructing principal 

strata based on cross-classification of {Si(0), Si(1)} as well as {Yi(0), Yi(1)}. Further details 

regarding this approach are given in Web Appendix B.

It follows immediately from Propositions 2 and 3 that if (8) and (9) both hold then the 

adjusted bounds are strictly contained within the unadjusted bounds and if neither hold, the 

adjusted and unadjusted bounds are equal. Note while it was assumed that X was a binary 

covariate, Propositions 1–3 can immediately be extended to any categorical baseline 

covariate with a finite number of levels k. Specifically, suppose adjusted bounds are 

calculated within each of the k strata and weighted averages of these bounds are computed 

analogous to (7). Then Proposition 1 will hold, and if there exists any two levels of X that 

satisfy either (8) or (9), then either Proposition 2 or Proposition 3 will hold respectively.
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7. Inference

The unadjusted and adjusted bounds can be consistently estimated by plugging in consistent 

estimators of the component parameters of the bounds. Specifically, let

and

where  and I() is the usual indicator function. Likewise, let ϕ̂
x = Σ(1 − Si)(1 − 

Zi)I(Xi = x)/Σ(1 − Si)(1 − Zi), π̂z = ΣYi(1 − Si)I(Zi = z)/Σ(1 − Si)I(Zi = z), and π̂
zx = ΣYi(1 − 

Si)I(Zi = z, Xi = x)/Σ(1 − Si)I(Zi = z, Xi = x). In the data example presented in Section 8 

below, individuals drop out of the study prior to evaluation of Yi so that the simple moment 

estimators π̂
z and π̂

zx given above will not be possible to compute. We ignore this 

complication for now and will return to this issue below.

Consistent estimators of the unadjusted bounds are  and 

where  and  are obtained by plugging in π̂
1 and γ̂ into (3) and θ̂

000 = π̂0. Similarly, 

letting  and  denote (6) evaluated at π̂
1x and γ̂

x, consistent estimators of the 

unadjusted bounds are  and  where  and  are 

obtained by plugging in ϕ̂
x, , and  into (7).

These estimated bounds reflect ignorance due to partial identifiability but do not account for 

uncertainty due to sampling variability; such uncertainty intervals can be constructed using 

the approach of Imbens and Manski (2004) and Vansteelandt et al. (2006). In particular, Lee 

(2009) proved the estimated unadjusted bounds  and  are asymptotically normal 

under standard regularity conditions and provided that Pr[Si(1) < Si(0)] > 0, i.e., treatment 

has a protective effect on the intermediate variable Si. Under these conditions, a (1 − α) × 

100% pointwise uncertainty interval for CE is given by

(10)

where  can be computed using equation (4.3) of Vansteelandt et al. (2006), and 

 and  are consistent estimators of  and . As n → ∞, 

the interval (10) will contain CE with probability (1 −α). A pointwise uncertainty interval 

based on the estimated adjusted bounds can be constructed analogously.
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8. Illustration

The Breastfeeding, Antiretroviral, and Nutrition (BAN) study was a randomized clinical trial 

to assess interventions for the prevention of breast milk transmission of HIV in 2369 HIV 

infected mothers and their infants in Lilongwe, Malawi (Chasela et al. 2010). There were 

three arms in the BAN study: daily antiretroviral therapy (ART) for the infant, daily ART 

for the mother, or control. While the primary analysis of the study considered comparisons 

of both ART arms to control, we will focus on comparing the infant ART and control arms 

only. The primary endpoint of BAN was infant HIV infection by τ = 28 weeks, so we let Yi 

= 1 if the infant was HIV positive by 28 weeks and Yi = 0 otherwise. Per protocol, infants 

who died or were infected in the first two weeks post-treatment were to be excluded from 

the primary analysis. Let Si = 1 if the infant became HIV positive or died by τ0 = 2 weeks, Si 

= 0 otherwise. An analysis that compares randomization groups conditional on Si = 0 is 

subject to selection bias. Instead we let the target of inference be CE, the change in risk of 

infection by 28 weeks due to infant ART in infants who would be HIV negative and alive at 

two weeks regardless of randomization assignment. Below estimated unadjusted bounds for 

CE are compared with estimated adjusted bounds based on a binary variable Xi indicating 

low birth weight (< 2.5 kg), i.e., Xi = 1 if the infant was of low birth weight, 0 otherwise.

Table 2 presents data on S and X from BAN by randomization arm. The proportion of 

infants who die or become HIV infected by two weeks is somewhat higher in the control 

group (5.7% versus 4.6%), although the difference is not statistically significant (Fisher’s 

exact test two-sided p = 0.35). That the proportion was higher in the control group supports 

the monotonicity assumption. Because some mother-infant pairs dropped out of the study 

prior to 28 weeks, the simple moment estimators of πz and πzx given in Section 7 cannot be 

computed. In the absence of competing risks and informative censoring, πx and πzx can be 

consistently estimated using the Kalpan-Meier estimator. However, in the BAN study death 

and breastfeeding cessation prior to HIV infection were competing risks. Therefore the 

Aalen-Johansen estimator (Aalen and Johansen 1978) for the cumulative incidence function 

can be used to estimate πz and πzx; see Long and Hudgens (2012) for additional details. The 

Aalen-Johansen estimates (ignoring X) were π̂0 = 0.0581 and π̂
1 = 0.0141. Using these 

estimates, the estimated unadjusted lower and upper bounds of CE are 

. Stratifying by X, the Aalen-Johansen estimators for each 

randomization arm were π̂
00 = 0.0609, π̂01 = 0.0233, π̂10 = 0.0107, and π̂

11 = 0.0604. 

Therefore the estimated adjusted lower and upper bounds are 

.

In this example, the estimated adjusted lower bound is greater than the estimated unadjusted 

lower bound, which is expected based on Proposition 3 and the fact Xi satisfies (9) 

empirically, i.e., π̂10 > (1 − γ̂
0) and π̂

11 < (1 − γ̂
1). On the other hand, the estimated adjusted 

upper bound is greater than the estimated unadjusted upper bound, empirically contradicting 

Proposition 1. That the estimated adjusted upper bound is not less than the estimated 

unadjusted upper bound is actually not surprising based on Proposition 2 and the fact Xi does 

not satisfy (8) empirically, in particular π̂
1x < γ̂

x for x = 0, 1. This suggests the adjusted and 

unadjusted upper bounds are equal, in which case no particular ordering between the 
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adjusted and unadjusted estimators might be expected. Grilli and Mealli (2008) reported a 

similar finding in an analysis of employment data of university students. This apparent 

contradiction between the estimated bounds and Proposition 1 suggests alternative adjusted 

estimators of the bounds, namely  and . 

These estimators are consistent for  and  and by construction will always 

empirically satisfy Proposition 1, i.e., will always be at least as narrow as the estimated 

unadjusted bounds. For the BAN data, . That is, by 

adjusting for the baseline covariate X indicating lower birth weight, the estimated bounds on 

CE are 63% narrower than the estimated unadjusted bounds.

Uncertainty intervals corresponding to the estimated unadjusted and adjusted bounds were 

computed using (10) with bootstrap variance estimates (as in Long and Hudgens 2012). For 

the unadjusted bounds, the estimated 95% pointwise uncertainty interval equals [−0.076, 

−0.025]. Corresponding to the estimated adjusted bounds [ ] based on the low 

birth weight indicator, the estimated 95% pointwise uncertainty interval equals [−0.069, 

−0.024], i.e., adjusting for low birth weight also results in a narrower estimated uncertainty 

interval.

9. Identifiability

As noted at the end of Section 3, in the absence of covariate X, CE is identifiable if and only 

if one of the following three conditions occur: γ = 1, π1 = 1, or π0 = 0. When at least one of 

these conditions holds, CE is identifiable and , i.e., the bounds collapse to a single 

point. In this section we consider conditions under which adjusting for the binary covariate 

X renders CE identifiable in the sense that the adjusted bounds collapse to a point, i.e., 

. By the form of the adjusted bounds given in (7) and the assumption ϕx > 0 for 

x = 0, 1, it follows that the adjusted bounds yield a single point if and only if

(11)

for x = 0 and x = 1.

Ding et al. (2011) also considered identifiability of a principal effect when outcomes are 

truncated by death, which is mathematically identical to the problem considered here. In 

addition to Assumptions 1 and 2 above, Ding et al. provided two additional assumptions 

which are sufficient for identifiability: (i) Xi ⊥ Yi|{Si(0), Si(1), Zi} and (ii) Pr[Xi = x|Si(0) = 

Si(1) = 0] ≠ Pr[Xi = x|Si(0) = 1, Si(1) = 0]. Unfortunately, assumption (i), which under 

Assumption 1 can be equivalently stated as Xi ⊥ Yi(z)|{Si(0), Si(1)} for z = 0, 1, is in general 

not subject to empirical test based on the observable data. Ding et al. also gave sufficient 

identifiability conditions that do not require (i) but instead require that X takes on at least 

three levels or is continuous and that the mean of Y satisfies a particular linear model.

In contrast, condition (11) can be assessed from the observable data because γx and π1x are 

identifiable under Assumptions 1 and 2 only. Moreover, (11) suggests a strategy for 
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selecting X. In particular, if a covariate X can be found such that (11) holds for x = 0, 1, then 

CE will be identifiable. If no such covariate is available, then selecting X such that (11) 

approximately holds for x = 0, 1 should yield adjusted bounds with width close to zero. For 

instance, in the MTCT from the previous section, the low birth weight indicator covariate X 

yields γ̂
0 = 1.000, i.e., (11) empirically holds for x = 0; while (11) does not hold empirically 

for x = 1, π̂
11 = 0.0604 is not too far from zero and indeed the birth weight adjusted bounds 

for CE are substantially narrower than the unadjusted bounds.

Finally, we note two special cases where Xi identifies CE. First, suppose Xi = 1 if and only if 

Si(0) = Si(1) = 0, i.e., Xi is a perfect predictor of membership in the NI principal stratum. 

Then trivially CE is identifiable under Assumption 1 alone by the stratum of individuals 

with Xi = 1. This first case is related to the “principal score,” i.e., the probability an 

individual is within a principal stratum conditional on one or more covariates (Jo and Stuart, 

2009). In practice, principal scores are not known but predicted based on fitted models using 

the observed data. For example, in the MTCT setting a model for Pr[Si(0) = Si(1) = 0|Xi = x] 

can be fit using data from infants assigned Zi = 0 because under Assumptions 1 and 2 such 

infants are in the NI stratum if and only if Si = 0. If a set of one or more baseline covariates 

(not necessarily binary or even discrete) can be found such that the principal scores for the 

NI stratum equal zero or one for each individual, then CE is identified by the stratum of 

individuals with principal scores equal to one. In practice this may not be possible; however, 

if covariates can be found such that the principal scores for the NI stratum are all close to 

zero or one, i.e., the principal scores are highly predictive of NI stratum membership, then 

the adjusted bounds constructed by stratifying on a dichotomization of the principal score 

should have width near zero. For the second special case, suppose Yi = 1 if and only if Xi = 

1, i.e., Xi is a perfect predictor of Yi. Then π10 = 0 and π11 = 1 implying (11) holds for x = 0 

and x = 1 and therefore . In settings where Zi has an effect on Yi and Zi is 

assigned randomly, no such perfect predictor Xi will exist (because Xi is measured pre-

randomization), such that the second case seems to have little practical implication.

10. Discussion

In this paper we considered whether bounds on principal effects can be improved by 

adjusting for a categorical baseline covariate. Necessary and sufficient conditions were 

derived for which the covariate adjusted bounds will be sharper (i.e., narrower) than the 

unadjusted bounds. The methods were illustrated using data from a study of interventions to 

prevent mother-to-child transmission of HIV through breastfeeding. Using a baseline 

covariate indicating low birth weight, the estimated adjusted bounds for the principal effect 

of interest were 63% narrower than the estimated unadjusted bounds.

The veracity of the analysis of the BAN trial depends on several key assumptions. 

Assumption 1, independent treatment assignment, is reasonable because infants were 

randomly assigned treatment. Assumption 2, monotonicity, implies that the treatment is no 

worse than control for any individual in terms of the intermediate variable S. As mentioned 

in Section 8 this assumption is supported by the observed data. Additionally, the BAN study 

principal investigator, Dr. Charles van der Horst, has indicated that monotonicity is 

reasonable (personal communication). However, in other settings this assumption may be 
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unrealistic. For example, monotonicity might be considered questionable in an analysis 

comparing the two active arms of the BAN trial, i.e., infant ART versus maternal ART. In 

such settings, bounds that do not require the monotonicity assumption would be needed.

There are several possible avenues of related future research. One possible direction entails 

studying how adjusting for covariates affects the efficiency with which the bounds are 

estimated. For example, is it possible that certain covariates could be advantageous to adjust 

for with respect to sharpening bounds, but disadvantageous to adjust for in terms of 

efficiency? In the presence of multiple baseline covariates, future research could explore a 

formal approach for determining which covariates to adjust for (or include in a principal 

score model) and how to subsequently draw valid inference accounting for the covariate 

selection process. Related to Assumption 2, future research could examine relations between 

adjusted and unadjusted bounds when monotonicity is assumed for the primary endpoint Y.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical depiction of bounds for the two fictional MTCT trials discussed in Section 5 with 

two different binary covariates X1 and X2. The solid lines depict equation (2) with π1 = 0.02 

and γ = 0.95 in the upper panels and π1 = 0.85 and γ = 0.8 in the lower panels. The · · · (– – 

–) lines represent (5) for X = 0 (X = 1). The vertical value of ○ (+) corresponds to 

.
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Table 1

Probabilities from the fictional trials described in Section 4 stratified by X1 and X2.

Trial 1 X1 X2

0 1 0 1

 γx 0.995 0.920 0.980 0.880

 π1x 0.035 0.010 0.005 0.055

 λx 0.400 0.600 0.700 0.300

 ϕx 0.419 0.581 0.722 0.278

Trial 2 X1 X2

0 1 0 1

 γx 0.890 0.740 0.875 0.625

 π1x 0.760 0.910 0.910 0.710

 λx 0.400 0.600 0.700 0.300

 ϕx 0.445 0.555 0.766 0.234

Note by Bayes Theorem ϕx must equal γxλx/(γ0λ0 + γ1λ1) for x = 0, 1; values of ϕx reported in the table have been rounded.
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